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ABSTRACT

The behavior of oscillated liquid columns was investigated theo-
retically and experimentally. |

The theory was derived from basic force-momentum relationships
for non-viscous and viscous fluids. 1In the derivations as much gener—
ality was retained as possible to permit future application of the
theory to a wide range of the parameters invol\}edu In particular, such
a general formulation of the theory permits inclusion of resonancé
effects, the effects of relatively large bubbles compared with the tank,
and the influences of the tank structure and the vibrating mechanism.
Equations are given for the instantaneous and mean motion of a bubble
and it is»shown that, for the restrictions applied in previous theories,
these equations identically reduce to equations of the previous
literature.

The present analysis was exténded also to viscous liquids and
the effect of viscosity on the stabilization of single bubbles was
shown. The results are compared with inviscid theories and experi-
mental results from previous literature.

The experimental investigations were concerned with identifying
the mechanisms by which bubbles are produced and clusters developed in
the iiquid, and establishing the dependence of these mechanisms on the
frequency and amplitude of the forced oscillations; viscosity, density,
temperature and pressure of the liquid; the concentration of dissolved

gases in the liquid; the dynamic deformations and structural properties
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of the container; and the responses of the vibration exciter system to
the frequency characteristics of the liquid-filled container.

From the results, it is deduced that the behavior of the liquid
is controlled by a strong feedback mechanism involving liquid, cluster
and container; and on the basis of this hypothesis a model is constructed
for the generation, development and stabilization of clusters.

Measurements of pressure distributions and the location of clus-
ters were compared with theoretical predictions of previous publications.

Because of the important interference of the vibration exciter
system with the dynamics of the liquid motion, the frequency charac-
teristics of that system as a function of the load impedance was studied
in some detail.

Recommendations are made for the extension of the present inves-

tigations.
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1.0 INTRODUCTION

The behavior of liquids under forced oscillations has been
investigated since about the turn of the century, but it was not until
relatively recently that a need for intensive research in this field
arose. The new importance attributed to this type of fluid motion is
largely due to the possibility that bubbles forming in vibrating fuel
tanks and lines of large missiles hamper their proper functioning.

This suppositioﬁ reéulted from observations of intensely pulsgting
combustion in the engines of some missiles, accompanied by other periodic
phenomena. - A tentative explanation given to some of these phenomena is
that pulsating'bubbles disturb the steady flow of fuel. In extreme cases,
the condition caused by bubbles can destroy the vehicle. Besides the-
efforts to eliminate such detrimental effects, it is also being attempted
to exploit the dynamics of vibrating liquids for useful purposes (sée e.g.
Baird, 1963). To contribute further to the understanding of bubble
dynamics in vibrating liquids, basic experimental and theoretical research
has been conducted at -The University of Tennessee, Department of Engineer-
ing Mechanics, since July 1, 1965. This research is sponsored by the
George C. Marshall Space Flight Center, Huntsville, Alabama, under
Contract No. NAS8-20152, -The -immediate specific aim of the research pro-
ject is to establish the relationship between physical properties of

liquids and their behavior under wvibration.



2.0 THEORETICAL INVESTIGATION

2,1 Previous Research On Bubble Motion in Oscillating Liquids

Some of the earliest theoretical results concerning the dynamics
of pulsating bubbles were published by V. Bjerknes (1909) in a book on
fields of force. The purpose of this book was to describe and examine
the extensive analogy between the force fields of hydrodynamic systems
and the fields of electromagnetic forces. To place this work into the
proper perspective,.one has to remember that the definition and theory
of an electromagnetic field were published just a few decades earlier
by Maxwell.

Consisténtly with the general objective of his book, Bjerknes
gives the derivation of the instantaneous and the mean force moving the
fluid around a pulsating and oscillating bubble, but he does not calculate
the resulting motion of the bubble.

More recently, several authors extended Bjerknes' theory to the
calculation of the motion of bubbles (Blake, 1949; Buchanan, Jameson
and Oedjoe, 1962).

Buchanan, Jameson and Oedjoe (1962) calculated the conditions for
stabilization of a bubble at a mean location in an inviscid liquid and
with the assumption that the volume changes of the bubble are small.

Another approach to the problem was taken by Bleich (1956). He
derived, from Lagrange's equations, two equations which determine the
motion of an iscolated bubble in an inviscid liqﬁid. ﬁe than restricted

the analysis to the case that the radial pulsations of the bubble are



small (to permit linearization) and that the bubble oscillates about a
fixed mean ldcation. Then the equations were solved for the corresponding
mean locations of the bubble. Furthermore, the stability of these mean
locations was examined and the conclusion was made that stable mean
location of an oscillating bubble exists onl& in elastic vessels,

Kana,Dodge (1964) further developed and refined Bleich's theory.
First, Bleich's simplification that the bubble moves in an infinite
medium was examined. Kana and Dodge calculated the approximate effect
of finite tank size (finite tank radius and finite distance between
bubble and liquid surface), but the correction term was not included in
the calculations, because it was shown to be small in all cases considered.
Further, Kana and Dodge presented a simplified method to account for the
finite rigidity of the tank. Their analysis also included a calculation
of the dynamic pressure distribution (p) in the tank. In a later part of
this report, measured results will be compared with their theoretical
pressure distribution.

During the past three decades or so, most theoretical studies in
this field were prompted by observations either in the liquid contents of
oscillating tanks or in liquids permeated by ultrasonic sound fields,
Earlier, since the first half of the nineteenth century, it was cavitation
that gave incentive to theoretical investigations of the liquid flow about
bubbles. It was in respoﬁse to such publications that Lord Raleigh (1917)
analyzed the hypothetical flow which would develop if, in an infinite
body of incompressible, non-viscous liquid at rest, suddenly a spherical

hole would be created. One remarkable result of his calculations is that



the location of the maximum pressure is at infinity only during the
early development of the flow. After that initial phase, the pressure
becomes much higher just a short distance away from the surface of the
bubble.

Rayleigh's result was deduced from an equation for the motion of
the bubble (cavity) surface which derif;d from energy considerations.
The equation of surface motion was modified by Houghton (1963) to
include effects of viscosity and surface tension.

The motion of a bubble in a vertically oscillating non-viscous
liquid is the topiec of a paper by Jameson and Davidson (1966). The
calculations deal with bubbles which execute periodic motion around a
fixed point. Their theory is further developed by Jameson (1966) to
account for viscosity. In the two studies, the radial motion of the
bubble surface was derived from the above mentioned modified Rayleigh
equation due to Houghton. The effects of viscosity on the oscillations
of the bubble and the pressure field about the bubble was obtained by a
method similar to the one developed by Stokes (1851).

Recently Fritz, Ponder and Blount (1964) ivastigatéd the effect
of important parameters which agise in liquid fuel missile systems on
bubble cluster formation. Thei?iexperiments produced data on the
acceleration levels required for bubble cluster formation as a function
of liquid column height, vapor space pressure above the liquid columm,
and tank wall thickness. Analysis of the data was made in terms of
Bleich's theory for an inviscid liquid column undergoing longitudinal

oscillation.
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Finally, several authors analyzed resonance characteristics of the
system composed of the elastic bubble and the mass of the surrounding

liquid. The first formula for the calculation of the resonant pulsation

frequency has been derived by Minnaert (1933). Refinements of expression

were made by Smith (1935) and Baird (1963) to include the effects of sur-

face tension and finite tank dimensions.

2.2 Theory

The preceding review of the literature on the behavior of bubbles
in vibrating liquids exemplifies the variety of basically different
approaches taken by the-authors to develop their theories. 1In spite of
the differenceé, however, the physical problem is essentially the same in
all of these cases, and so the results should inherently be related to
each other. In view of this situation, it seems indicated to present a
qualitative discussion of the process and of the anticipated character-
istics of the theoretical solutions. Such a general discussion may also
serve as a guide in the further development of a theory, the beginning of
which is outlined in the next section.

Bubbles in vibrating liquids can be observed over a very wide
range of conditions. Within that range, the effects of certain factors
vary more than an order of magnitude and so their relative importances
change. It follows then that the permissible simplifications in theories
vary depending on the range of intended applications of these theories.

One of the purposes of the present theory is to predict conditions
under which bubbles formed in or entrained into the liquid become

stationary.
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Experiments performed under conditions of bubble stabilization gave
results which permitted comparison of the various forces acting in the
liquid. Calculations based on recordings of the tank acceleration
indicate that the forces vibrating the liquid are of the same order of
magnitude as the gravitationgl forces. Since it is the driving forces
which have to balance the buoyancy and they are of the same order of
magnitude, the mechanism preventing the bubbles from rising must be a
first order effect.

One also concludes that the phenomenon of bubble stabilization is
non-linearly linked to the forced motion. The argument for this con-
clusion can be the cobservation that the up and down phases of the periodic
tank motion can be symmetrical and still the net motion of the bubble is
in one direction, downward.

Further, it is unlikely that a state of resonance in itself can
explain this type of bubble motion. Besides theoretical reasoning,
evidence against that possibility is given by the experiments in which
stationary or downward moving bubbles were observed over wide ranges of
the variables, especially the frequency. A state of resonance is unlikely
to exist over such wide ranges.

One may note here that gravity, i.e. hydrostatic forces, camnot be
linked to the net downward motion of bubbles. Since buoyancy forces the
bubbles to move up, a downward motion as a result would require that
gravity forces interact with the alternating physical quantities like
velocity, acceleration, pressure, etc. Hydrostatic forces, however, are

independent of these.
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Finally, one expects that viscous forces strongly modify the motion
of bubbles, but that they are not the cause of the net downward drift of
bubbles. This is suggested by the observation that variation of the vis-
cosity, by using liquids of as widely different viscosities as water,
alcohol, and glycerine, (Buchanan (1963), Jameson and Davidson (1966),
did not change the conditions for balancing the buoyant force much.

One is led  to this conclusion also by a qualitative analysis of
the factors controlling viscous forces. First, since these attenuate
existing relative motion, they cannot amount but to a fraction of the
total force causing the motion of bubbles relative to the fluid. But
that force, as we have seen, is of the same order of magnitude as the
buoyant force. Secondly, the primary factors determining the viscous
forces in a given fluid are the velocity and the surface of the boundary,
in this case, the bubble. If, without the interference of viscosity, the
velocity variation would be symmetrie, it would be left to the difference
of the surface area during the upward and the downward part of the bubble
motion to generate the required force. This, however, would not suffice
to effectively oppose buoyancy because theée buoyant force varies with the
volume of the bubble and the volume changes are relatively larger than
the surface changes, unless some rapid and large distortions would occur
in the shape and surface area of the bubble with little volume change.
But such fast and extreme distortions have never been recorded.

Even if it is not assumed in the previous paragraph that the
velocity oscillations are symmetric, their effect still can be discounted

by observation. It is sufficient to demonstrate this on a single case,
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e.g. when at a moderate frequency a larger bubble becomes stationary or
slowly moves downward. The amplitude of the center's periodic displace~-
ment is not more than a relatively small fraction of the diameter and,
therefore, even the amplitude of the velocity oscillations is small.
The differences between the up and down velocities are then even smaller.
Thus, the effect of viscosity must be of an order higher than buoyancy.

One must add, however, that in special cases, like the resonance
of bubbles, viscous forces probably grow to the point where their
magnitude equals a large fraction of the buoyant force.

Assuming the validity of the above discussion, only non-linear
interactions of the inertia forces and the pressure can be responsible

for the primary control of the mation.

2.2.1 Inviscid Theory

The present analysis is the first step in a plan for the develop—
ment of a theory of vibrating liquid columns. It is much less specific
than most of the existing theories, because it was attempted to exclude
as many of the usual simplifying assumptions concerning the liquid motion
as possible. In this way, it remains possible to incorporate new infor-
mations as they become available from theoretical or experimental
investigations.

One such frequently encountered assumption is that the time
dependent variables are pure sinusoidal functions of the time. Such an
assumption may be adequate to obtain a clue, how certain physical
quantities interact, but it is probably not sufficiently accurate for

engineering applications. In fact, measurements of tank acceleration,



pressure fluctuation and bubble pulsation clearly indicate that--at
least under certain conditions--the wave forms of all of these
quantities strongly differ from a pure sine wave.

With respect to the phase relationships of the alternating
quantities, the most frequently made approximation has been, that
they are in phase. Simultaneous measurements of the instantaneous
tank acceleration and the instantaneous pressure inside the bubble
showed, however, that this is not always the case. In a plexiglas
tank of seven inches outside diameter and one-fourth inch wall thick-
ness this phase difference was observed to be as much as 90° at a
frequency of 179 cycles per second in methyl alcohol and when a stable
bubble cluster was present.

Assuming then that these variations are in phase eliminates
some existing effects from the theory.

The above simplifications are probably always justified, when
the bubble is small compared with the container diameter, when it
pulsates with small amplitudes, maintains spherical shape, and the
frequency of the forced oscillation is much lower than the resonant
frequency of the bubble. For non-viscous liquids this has been shown
to be true by Bleich and Kana Dodge. In practice, however, these
conditions are frequently not satisfied. It is hoped, therefore, that
a theory can be developed in which these restrictions are relaxed.

A further important factor is the elasticity of the tank. The
effects of this, too, have been included in theories only in very

simplified forms, if at all. It is easily verified by experiment,
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however, that the dynamic effects on the tank deformation are strongly
fed back to the liquid, altering its motion and the location of the
bubble. It would be important, therefore, to take these effects into
consideration, but very little information about them is available at
this time. This is the reason why they have been mostly ignored or
greatly simplified in the past. It is the aim of a new project to shed
more light on this aspect of the physical problem.

In the theofy as presented below, effects of viscosity are
omitted. They are to be restored in the next section. It is expected
that inclusion of viscosity will, in some cases, considerably change
the present résults, and so the latter serve mainly the purpose of
showing the relative magnitudes of the primary forces controlling the
behavior of bubbles and to show how these forces depend on other
physical quantities.

It was pointed out earlier that gravity has no part in the
dynamic response of bubbles to the forced vibration. Consequently, it
is immaterial for the theoretical investigation of this response in
which direction the oscillations of the liquid column occur, and so we
shall assume that they take place along a fixed straight line of
arbitrary direction and zero gravity will be assumed for the time being.
This assumption permits us to write the vector equation for the driving
force and the resulting acceleration as an algebraic equation. The
pressure gradient, created by this acceleration, is also parallel to the
same fixed direction, and varies in time as the acceleration, but it is

constant at any one instant throughout the liquid if this is homogeneous.
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This part of the motion, the primary motion, is that of a rigid body and
it requires’that the constraints of the liquid are rigid. Additional
motions arebsuperposed on this one when the constraints of the liquid are
not rigid. The assumption of rigid body motion also presupposes that a
sound or pressure wave having the frequency of the forced vibration is
much longer in the liquid than the size of the liquid body in the
direction of the oscillations. Under such conditions, the pressure field
set up by the acceleration is similar to the hydrostatic pressure field
and the resultant pressure force, F, acting over a closed surface,
stationary with respect to the liquid, is

F=a (2.2.1-1)

iV ,

which is analogous to buoyancy. In Equation (2.2.1-1) a, is the

acceleration of the liquid, oy its density, and Vb the volume enclosed

by the surface. Such a closed surface can be the boundary of a bubble.
When the closed surface is free to move with respect to the

liquid and it contains a mass MB, the resultant force of F and the

inertia force of Mb’

F-aM , (2.2.1-2)

will move the surface with respect to the body of liquid at infinity, or
the rigid outer constraints of the liquid. Such relative motion requires

relative acceleration of the mass Mb,and the liquid around the surface.
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The inertia of the surrounding liquid can be expressed formally by an

apparent mass, Ma’ possessed by the closed surface,

M =k p V

a 1°4% , (2.2.1-3)

where kl is a coefficient appropriate to the shape of the closed surface.

When this closed surface is a bubble entirely within the liquid,
Mb represents the mass of the gas filling the bubble, and if the bubble
is spherical and its diameter small compared with the distance to the
nearest wall or free liquid surface, kl¢51j2.

In terms of the above quantities and the velocity of the bubble

b
center relative to the liquid at infinity, the total momentum Itr of the

relative motion is
Itr = (Mb + Ma)vb = (Mb + klprb)vb . (2.2.1-4)
Application of Newton's law gives--neglecting viscous effects—-
F-aM =a(oV-M)==200 +kpoV)v, ,
2 [N AN dt 14"
= 4+ K,V )a + va(k 0,V ) : (2.2.1-5)

d
where ay = :%? is the acceleration of the bubble center relative to the

liquid far from the bubble.
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In many cases, the bubble maintains a nearly spherical shape at
all times. in many other cases, the bubble is not spherical but at least
one can assume that the shapes taken by the bubble at different moments
of the oscillation are geometrically similar. When such an assumption is
permissible, that component of the flow which is due to the relative motion
of the bubble center remains dynamically similar during the oscillation
and kl becomes independent of time.

The assumption of geometric similarity of bubble shape is not always
accurate enough. When the bubble has the form of a cluster and it reso-
nates to the frequency of the forced motion, its shape becomes strongly
distorted during a cycle of the oscillation. The high degree of distortion
can clearly be observed on high-speed photographs. For the sake of sim-
plicity, however, here we take kl as a constant.

The liquid density Pe is also approximately constant by virtue of
the above restriction on the relation between the length of pressure waves
present and the size of the liquid—filled space. Accordingly, Equation
(2.2.1-5) may be simplified to

dv.
b
ag(pzvb— Mb) = (MB + klpzvb)ab + klpzvb It . (2.2.1-6)

In the present calculations we assume that the liquid is not every-
where bounded by the container walls, and we shall call the boundary of the
liquid not in contact with the container the free surface. We consider

such cases because they are more general and more important, as regards the
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dynamics of bubbles, than a closed, entirely liquid-filled container.
For the samevreasons, we also assume that the container oscillates in a
direction normal to the free surface rather than parallel to it.

Without loss of generality, we may further assume that the container
is in such a position that the direction of oscillation is horizontal,
since gravity does not enter into the dynamics of the motion analyzed.

In this position, the liquid may be prevented from pouring out of the

container by a thin elastic membrane as shown in Figure 1.
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FIGURE 1., ARRANGEMENT OF OSCILLATING CONTAINER

Because of the above configuration, the boundary conditions of
the liquid motion are not symmetrical with respect to the alternating
directions of the container motion. In other words, the free surface,
along which the pressure is constant, is upstream when the container in
Figure 1 moves towards the left, and it is downstream when it moves to
the right.

Similarly, the bottom of the container, where the fluid has to

follow the motion of the wall, is downstream in the first case and upstream
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in the latter. As a consequence, when the container accelerates to the
left, the préssure anywhere inside the liquid is higher than at any
arbitrary point during acceleration to the right.

If now we place a bubble inside the liquid, it will contract during
acceleration to the left and expand during acceleration to the right.
Of course, change of the bubble volume changes the forces accelerating
the bubble. The effect may be sﬁown on Equation (2.2.1-3) after division
by (Mb + klpzvb)’ and with some rearrangement, remembering that MB is
constant. Thus,

vV, - 5
a, = E%%;%;:E%;az - v, 5o [}n(klpmvb+ Mb)] ,  (2.2.1-7)

or

1 1 }[1 i d

ab = E]—- 1+Mb/k_1p2’vb - klpzv‘b)aﬂ‘ - vb -d—E [ln(klpzvb-‘- Mb)] ° (2-201_8)
With the definition

e = __%3__ , (2.2.1-9)
ko Vs

we can reduce the above form to

1-k1e) a v
0 = 1 2 b [ d
b 1+e

(2.2.1-10)
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The derivative

v
d 1949
ac (n V) = v, a

(2.2.1-11)

in the last term is controlled by the pressure inside the bubble (pb) and
it can be expressed as a function of

d p,
18P 4 )
& - @t (In Pb) . (2.2.1-12)

The pressure Py s in turn, is determined by the acceleration a, of the con-

tainer. 1If Apb is the difference between the pressure during acceleration
and the pressure when the container is at rest,

Apbfu a (2.2.1-13)

L
and so E% (In Vb) is determined by the acceleration of the container and

it is independent of the magnitude of V

b? i.e. the size of the bubble.

The only way the magnitude of Vb directly affects the relative

acceleration of the bubble is through £. Since (1—kls) and T%E increase
when Vb increases, in a configuration as in Figure 1, an acceleration of
the container towards the left produces a smaller relative acceleration
of a bubble than an acceleration of equal magnitude towards the right. As

a result, oscillations with no net displacement of the container produce

a migration of bubbles toward the bottom of the container (here to the
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right.) This effect is, however, very small. If Ae is the deviation of
g from its méan value, the net displacement of the bubble from this source
is the resulting effect of the variation of Ae over each cycle. Typically,
as in the case of an air bubble in water, & is about 2.1073 and Ae a frac-
tion of this.

Clearly, these effects are of high order compared with hydrostatiec
buoyancy and so negligible when they compete with the latter. Such is the
case in an arrangement where the free surface is horizontal and the oscil-
lations are vertical. Then the hydrostatic buoyant force acts in the same
direction as the dynamic forces and, therefore, the effects of Ae become
negligible.

The term which is then the most important in Equation (2.2.1-10)

for the net displacement of the bubble is

b d

T g (In V) . (2.2.1-14)
This term represents the inertia force of the increase in apparent mass
per unit of time. After substitution of the pressure inside the bubble
and neglecting e€:

o 4(p)

d = —
g An V) = vy p, dt :

vy (2.2.1-15)

The constant n is determined by the thermodynamic process undergone by

the gas in the bubble. In general, that is a polytropic process having
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as limiting cases the isothermal and the adiabatic processes. Since n
and p, are always positive, the sign of this term is determined by

d(p,)
AT . (2.2.1-16)

An equation for the relative veiocity vy of the bubble is obtained

by integration of (2.2.1-10) with substitution of (2.2.1-15)

"1k, L b 4
vy = [ T7e ]Ezdt + i;z-;; e dt - i:z-ﬁg(ln kipz)dt + vbtl
1 1 1
(2.2.1-17)
where vbtl represents the relative bubble velocity at time tle

Without loss of generality, especially in the case of periodic motion,
one can select for t; an instant at which vbtl is zero.

If the container oscillates with period T, the net bubble displace-
ment over a full cycle Asb may be expressed formally by a second integration

as

1 1 tl N 1 t v dp
_ _ ~k1e dg b n__ b,
Asb = vbdt = Tre kl dtldt + Tve Py T dt {dt (~)
t 't
tl t1 1 t1 1
tl+T ¢
o 4
- E;Z-E;(ln klpl)dt dt (2.2,1-18)
t t
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Based on the above equations, one can discuss at this point some
characteristics of the dynamic behavior of bubbles in oscillating liquids,
but because of the large variety of possible modes of the liquid motion
and the sizable differences between them, little can be said in full
generality. For this reason, certain characteristic classes are sepa=
rated and discussed by themselves.

1. When the natural frequency of the bubble is much higher than
the frequency of a forced harmonic or nearly harmonic oscillation, the
bubble size responds almost instantaneously to the pressure in the sur-
rounding liquid and the pressure inside the bubble varies almost in phase
with the tank acceleration (see also Bleich 1956, Jameson & Davidson 1966).
If in addition the accelerations are not extreme in order to avoid strong

distortions, one can write approximately

d(p,) d(a,)
vb—EE——ﬂs ¢V dE , (2.2.1-19)
where ¢y is a positive constant if, in reference to Figure 1, the direc-

tion to the left is defined as positive.

Since the tank oscillations are nearly harmonic,

(2.2.1-20)

(2.2.1-21)
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where w is the circular frequency.
Substituting this into Equation (2.2.1-10), the relative accelera-

tion of the bubble becomes in approximation

l1-k.c a ne,w? v,v v
18 3y DT VeV, Y, g |
%= TTwe k| Ite p,  Tte S(ln kp,)  (2.2.1-22)

The corresponding substitution into (2.2.1-18) yields the net bubble
displacement during a period. The resulting expression, however, can
be simplified.

The last term of Equation (2.2.1-22) is negligible because klpz
is practically constant.

In the first term on the right hand side kl is a constant, the
variations of € are very small as we have seen earlier, and a, is a
nearly harmonic variable. Consequently, when this term is integrated
over a period of the motion, the result is negligible compared with the

other integrals.

Finally, if we take into consideration that e<<1,

dt {dt (2.2.1-23)

The value of the integral of Equation (2.2.1-23) is determined

by the triple correlation of Vs Yy and-%—. It is noteworthy, however,
b
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that in the cases under discussion, and also more generally, the sign of

this double integral is determined by the correlation of v, and vy alone,

%

and Py, only modifies its magnitude. This can be verified by examining
. . d vy

the relationship of Py, to I and the phase relation between the latter

and Voo

In the class of motions being discussed, vy and v, are very nearly
in phase and so the integrand is positive during almost the whole cycle
of the oscillation. As a consequence Asb is negative which means that
the bubble migrates toward the bottom of the container.

2. When the difference between the frequency of the container
oscillation and the resonant frequency of the bubble decreases, the wave
forms differ increasingly from a pure harmonic and the phases of the
periodically changing variables shift more and more with respect to each
other. These changes tend to reduce the magnitude of Asb.

Presence of such conditions were observed after large bubble
clusters have developed.

All of the above results were derived for configurations in which
the container axis and the direction of the oscillation were horizontal,
and, therefore, no effects of gravitation appeared in the equations.
Gravitational effects, however, do appear when the container is turned
in the upright position and it is oscillated in the vertical direction.
The necessary change to account for gravity involves addition of a term,

the hydrostatic buoyancy, in Equation (2.2.1-1), which becomes

F = azpzvb + gplvb (2.2.1-24)
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if the positive direction is upward and g is the gravitational constant.

Equation (2.2.1-5) becomes

_ 4
3, (P V= M) +gp ¥y = (M + kyp Vi da+ v (k0 V)

(2.2.1-25)
and the new form of (2.2.1-10) is
1-k_ e a. V.
1 & 1 g b | d 4 -
% T e K, | Ie k| Tie [dt(ln Vp) + g klpz)] (2.2.1-26)
Finally, Equation (2.2.1-18) acquires an additive term
t, +T
1 t
+ T B e at (2.2.1-27)
1
t
t1 1

These results can be further improved by properly accounting for
the finite dimensions of the container. Until now the derivations cor-
responded to a model consisting of a finite sized bubble pulsating in
an unbounded body of liquid. In such a case, the flow field generated
by the pulsations is symmetrical around the center of the bubble. This
case is, however, unrealistic because the walls of the container are
always at finite distances from the bubble and the flow field is dis-
torted compared with the above one, The consequences can easily be seen

qualitatively in the extreme situation in which the bubble occupies the
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whole cross section of the container. The 1liquid is then separated into
two unconnected regions, one between the bubble and the bottom of the
container, which we shall designate with A, and another between the free
surface and the bubble, designated with B, Clearly, in the absence of
viscosity and when the container is cylindrical, axial oscillations of
the tank can be transmitted to region B only through the bubble. Now,
if the bubble is soft because of low mean pressure, the liquid in region
B will hardly move.

On the other hand, if the bubble is made hard by sufficiently
high mean pressure, the natural frequency of the pulsations is much
higher than the frequency of the forced oscillations and, as a result,
the liquid-in region B will oscillate together with region A and the
tank, almost like one rigid body.

At a certain intermediate pressure, the bubble will resonate to
the oscillation frequency of the tank, and region B will oscillate with
large amplitudes.

When the bubble is smaller than the container cross section, the
liquid is, of course, a single connected region and the two regions of
liquid motion are not as clearly defined as above. Basically, however,
the description of the liquid motion will be the same beyond some axial
distance from the bubble. This supposition is supported by phase angle
measurements of the pressure fluctuations. The pertinent characteristic
of this motion is that the axial component of the fluid momentum is not

the same on the two sides of the bubble. Consequently, if the bubble



24
begins to move in an axial direction relative to the container, the
domains of A and B change at a certain rate and this will be accompanied

d1,
by a rate of momentum change ——.

dt
In a sense, it is equivalent to say that the bubble has also an
apparent mass dependent on its location.

For further analysis, we can define a velocity change AVW and a

d
mass flow rate T in such a way that

dlW -
rri AVW TS . (2.2.1-28)

If we arbitrarily adopt the definition

M

'_EEVAQ

It APy » (2.2.1-29)

i.e. the rate at which mass changes from region A to region B, when the
bubble moves with a velocity vy in a container of cross sectional area
’ Ac’ one expects that the corresponding velocity increment AVW will be

: dv
a function of the rate of volume change of the bubble —E% divided by

Ac and the ratio of the bubble surface area S, to Ac'

b

When the bubble moves with a positive velocity Vi and at the same

Vb
time expands so that T is also positive, the momentum change is nega-

tive. Symbolically, we may write

le k dVb Sb

(2.2.1-30)
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where k is a positive valued function varying probably with the relative
size of the tank to that of the bubble with their shapes and with the
depth of the bubble below the surface.

The volume change in (2.2.1-30) is again expressed by the pres-

sure change through the polytropic relationm,

~dv. nV, dp
b b *b
ol b P (2.2,1-31)

and the final expression for the rate of momentum change becomes

dl V.p, S, dp
W b™2 b b
Fraie kn vy TS % Tde (2.2.1-32)

Py, Ac dt
This term has to be added to the right hand side of Equation (2.2.1-25)
in order to account for the effects of finite container size.

The resulting change in the relative bubble acceleration a, is

a fourth term at the right in Equation (2.2.1-26):

Ikiea, v kn % Py 1 g

_ 2 b 4 44 _
% " TTre E, Lt [dtun Vp) Fgcn klpz)] k (1+e) p,A_ dt @ T+e k]

(2.2,1-33)

As before, we take for a more detailed discussion first those
cases in which the resonant frequency of the bubble is much higher than
the frequency of the container vibration. This restriction permits appli-

cation of Equations (2.2.1-19) and (2.2.1-20), and one obtains, after
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neglecting € in relation with unity:

a, = a{:’:g - vy [a-%(ln Vb) + a—%(ln klpzﬂ + %é‘;-—c‘clvbvzwz .
(2.2.1-34)
This approximation is further simplified by disregarding changes of klp2
and by substituting for E%(ln Vb) as we did earlier. Then we get
a = g;j“ - ne Vﬁ:b(l - %1-229 (2.2.1-35)

The integrals for the relative bubble wvelocity and displacement become

t g+a t S, wv,v
v | o L ae - ncw? | (1 - %f—zéo 2B 4 (2.2.1-36)
1 1 ¢ Pb
tl tl
and
t. 4T t.+T
: i gta, . ‘ Kk Sp. Y% ’
Asb = m dt dt - nclw2 a - m K—Q — dt dt
1 1% Py
t t
g1 51 (2.2.1-37)

The interpretation of the last equation is that the effect of buoyancy
is offset if the value of the second integral is sufficiently large.

But the latter depends, among others, on the size of the bubble, in that
the value of the integral decreases as the bubble grows. This might be

the mathematical formulation of the observation that, under certain -
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conditionsy :small bubbles move down in an oscillated tank while larger
ones move up simultaneously. These last equations are easily related
to the equations derived by Bleich which are also the basis for the
theoretical calculations of Kana and Dodge.

If we re-substitute Equations (2.2.1-30, 31 and 32) into (2.2.1-33)
and neglect € (i.e. the mass of the gas in the bubble) and E%(ln klpx),

(i.e. liquid compressibility), we get

8=~ a{{rg - :;'11 dv? + 'E—i_b;h—dzz , (2.2.1-38)
1 b 1 7¢ b
or
(- i) Ac) ra N N kl(a-y, te) (2.2.1-39)

If we make the restriction that the bubble is small compared to the

radius of the tank, i.e. Sb

S
was assumed by Bleich, then %—-KE becomes negligible next to unity and
1 “c

kl = 1/2 (factor for apparent mass). Then we can write

<<Ac’ and that the bubble is spherical, as

d,o N _
dt(vab)»JZVb(aZ + g) . (2.2.1-40)

Using Bleich's notations, assumptions for the oscillatory tank motion

and result for the radial pulsation of the bubble (A), namely
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=4 34 (.3 2
v, = 3n'(a+A) =3 (a® + 34a%)
a, = ~Ng cos wt
a
and A =3 acos wt .

Equation (2.2.1-40) becomes, after substitutions

E% [(1 + o cos wt)é]$v=2(l + a cos wt)(Ng cos wt - g)

(2.2.1-41)

which is identical to Bleich's Equation [18].

2.2.2 Viscous Theory

The general problem of predicting the effect of liquid properties
on the dynamics of bubble clusters has been discussed in the previous
sections. On the basis of experimental evidence and theoretical analysis,
it has been established that the cluster dynamics involves the complex
interaction of accelerative liquid forces, as influenced by the deforma-
tion of the confining vessel, and the inertia force of the bubble clus-
ter and its associated added liquid mass. Interpretation of the experi-
mental data on cluster dynamics is restricted somewhat by the fact that
the effect of liquid properties on the motion of single bubbles has not
been fully elucidated.

This section is concerned with an analysis of the stabilization

phenomenon of single gas bubbles in an oscillating liquid to account
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quantitatively for the effect of liquid viscosity. In essence, the recent
theory of Jameson (1966) ié modified and used as a basis for developing
a criterion for the single bubble stabilization. Discussion of the new
viscous theqry in comparison to the literature results and Suggestions
for further study are given at the end of the section. The analysis
supports the point made in the previous section that viscosity goes not
influence in a first order way the accelerative forces required for
bubble stabilization.

Extension of the concepts presented in the previous section of
this report indicates that the momentum equation for a spherical bubble
in a viscous liquid is:

, o o = A2 ad
a [Tplep HRegdu | wyp,(g - AT sin W) o paiigr)D

dt gc i gc gc

3 (2.2.2-1)

where vy bubble volume,
PpoPy = bubbles density and liquid density,
u = bubble velocity,
U = relative bubble velocity referred to the oscillating liquid,
R = bubble radius, “
A = maximum amplitude of the liquid motion undergoing a displace-
ment x = A sin wt,
w = circular frequency of the liquid oscillation,
t = time,

Ywp/2u,

™
]
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K = apparent mass coefficient for a sphere accelerating in a viscous
liquid,

8.~ force~mass conversion factor.
The term on the left side of equation (2.2.2-1) represents the rate of
momentum change of the bubble and its apparent mass, and the right side
of the equation gives the forces due to gravity, oscillating acceleration,
and viscous drag, respectively. The viscous drag term includes the
steady state drag and the additional drag for oscillatory relative motion
between the bubble and liquid, as developed by Stokes (1851). Further,
use is made of Bleich's (February 1956) suggestion that a criterion for
bubble stabilization can be obtained by requiring that the sum of the
non-periodic terms on the right side of equation (2.2.2-1) be equal to
zero. Such a condition will insure that the solution for the bubble
velocity from equation (2.2.2-1) will be periodic, and hence, the bubble
will be stabilized about a mean position.

Upon using Jameson's theoretical result for the relative bubble
velocity U in equation (2.2.2-1), the bubble stabilization condition

is found to be the solution of the equation,

g _ _8_ + ﬂUSRo(l + ZBRQ)b _
wla 2 p vko2

0 ; (2.2.2-2)

here,

¢ = amplitude factor in the bubble pulsation equations, V = VO

(1 + ¢ sin wt) and R = Ro(l + £ sin wt) with a theoretical
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value obtained by Jameson and Davidson (1966), & = ph w2A/

(g P, * heg),

b = theoretical coefficient in Jameson's (1966) equation for rela-
tive bubble velocity,
h = depth below liquid surface at which bubble is stabilized,

Pe= gas pressure above the liquid column.
In the development leading to equation (2.2.2-2), it was assumed that
the bubble pulsatioﬁ and liquid oscillation are in phase, and that the
bubble pulsation process is isothermal.

A form of equation (2.2.2-2) convenient for comparison to previous

theoretical results can be obtained by use of the definitions NAC= sz/g,
PeBec 2 ..
P=1+4 5gh’ and NS = be /v. The last ratio is the Stokes number and

involves the liquid oscillation frequency (f), the mean bubble radius
(Ro), and the liquid kinematic viscosity (v). When these quantities are

used in equation (2.2.2-2), the final form is:

1/2
Ny |1 3Kp(L + /ARG . 2.2.2-3)
PV:1/2' 2 87 ('K12+ KZZN ) > oL

where Kl and K2 are the theoretical constants which appear in Jameson's
equation for the relative bubble velocity and are defined in terms of

the Stokes number as

K, = 1/2 + 9/4/wN_ ,
K2 = 9/4VﬂNS 1+ 9/4VNNS)1
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Equation (2.2.2—3) provides a working criterion for predicting the oscil-
lating acceleration necessary to stabilize a single gas bubble in a
viscous liquid.

Figure 2 is a plot of Equation (2.2.2-3), élong with the bubble
stabilization criterion as predicted by Bleich (February 1956) for an
inviscid liquid in a tank with rigid wall, and as predicted by Jameson
and Davidson (1966) for an inviscid fluid. It should be pointed out
that Bleich's equation is based on adiabatic bubble pulsation, while
the Jameson and Davidson equation is based on the assumption of iso-
thermal bubble pulsation. These two equations are given in terms of

the variables used in Equation (2.2.2-3) as follows:

Bleich, —y75 = Y2y (2.2.2-4)
pl/

where Yy is the specific heat ratio for the bubble;

Jameson and Davidson, <;%7E =2 . (2.2.2-5)
It is noted that the theoretical result for a viscous liquid is within
the bounds given by Equations (2.2.2-4) and (2.2.2-5).

The plot of Equation (2.2.2-3) reveals that at Stokes numbers
greater than 100, the criterion for bubble stabilization based on vis-
cous theory approaches the theoretical criterion from the isothermal,

inviscid theory. This means that although there exists substantial
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relative motion between the gas bubble and the oscillating liquid, the
viscous effeét is small because of the low liquid viscosity. In contrast,
the viscous theory criterion at very low Stokes numbers approaches the
Jameson-Davidson result because the relative motion between the bubble
and the oscillating liquid becomes negligibly small. The maximum vis-
cous effect ié shown at a Stokes number near 0.5.%

Experimental data on bubble stabilization for various liquids
are also shown in Figure 2. Data points are shown for glycerol solutions’
and water from the work of Jameson and Davidson (1966), and for aqueous
calcium chloride solutions and pure alcohols from the work of Buchanan
(1962). None of these investigators reported the bubble sizes for their
experimental observations of bubble stabilization acceleration. In
Buchanan's paper there is a suggestion that bubbles about 2 mm in diameter
were involved in their experiments. In absence of data, a bubble diameter
of 2 mm was taken for all the experimental points shown in Figure 2.

The experimental data agree in general with the theoretical pre-
dictions, as revealed in Figure 2. The largest differences between the
theoretical and experimental values are for the low surface tension
alcohols and the high surface tension calcium chloride solutions. The
differences are large enough to indicate that surface tension effects
need to be incorporated into the theories. In order to accomplish this,

it will be necessary to consider quantitatively the surface tension in

*For reference, a 2 mm diameter bubble stabilized at 100 cycles/sec in
a typical cryogenic liquid gives a Stokes number of ==103,
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the bubble pulsation and in the drag relationship for the relative motion
between the bubble and the oscillating liquid. It is known that at
Reynolds numbers greater than about 200 the surface tension influences
sharply the drag of gas bubbles in liquids (Peebles and Garber, 1953).

The importance of the information on single bubble stabilization
in relation to the more complex problem of bubble cluster dynamics has
been cited earlier. Although the single bubble stabilization theory
appears adequate, a.number of details have yet to be established by
comprehensive experiments. A list of further studies needed 1is as
follows:

1. Measurement of relative bubble velocity in oscillating liquids
under bubble stabjilization conditions for liquids to cover the Stokes
number range of 10! to 103and to include the surface tension range of
about 20 to 100 dynes/cm.—-It is expected that analysis of the surface
tension effect and correlation of the experimental data will involve
an oscillatory "Weber'" number of the form Ro3f2p/0gc, where o is the
liquid surface tension. These experiments should be carried out in rigid
vessels with pure liquids and injected gas bubbles of known sizes. The
high speed photographic methods employed by Jameson and Davidson (1966)
should be suitable for the bubble velocity measurements.

2, Measurement of the mean velocity of bubbles which rise or
move downward in oscillating liquid columns.--These experiments will
be more easily executed than those involving measurement of the local

bubble oscillating velocities described above, and the results will
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yield data to test quite critically the existing theories on oscillatory
bubble motion.

3. PFurther analytical investigation of the surface tension effects
on oscillatory bubble motion by including the surface tension term in
the equation for bubble pulsation and also by accounting for bubble shape

changes in the drag relations for bubble motion.



3.0 EXPERIMENTAL INVESTIGATION

3.1 Equipment

The experiments for the study of bubble behavior in oscillating
liquids were performed with the aid of an MB Model C 25 H vibration
exciter system (Figure 3), which was furnished by the George Marshall
Space Flight Center on a loan basis. The containers for the liquids
were cylindrical Plexiglas tanks (6-1/2 inches inside diameter) of
various wall thicknesses (1/4 inch and 1/2 inch) (Figure 4).

For the measurements of the forced tank oscillations, two instru-
ments were used simultaneously. One was the exciter system's own built-~
in velocity sensor, the other was an accelerometer mounted on the
vibration table at the base of the tanks.

The pressure field inside the liquid was explored with a quartz
pressure transducer and a Kistler Universal Dial-gain Charge Amplifier
Model 504. Quantitative evaluations of varying transducer signals were
based on the recordings of a Sanborn "150" Series Recording System.

Finally, the instantaneous values of periodically varying
quantities were measured on the screen of a Tektronix Type 502A

Oscilloscope.

3.2 Experimental Techniques
The experiments performed to date can be grouped essentially

into four categories as regards the techniques used.

37
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VIBRATION EXCITER AND CONTROL CABINET

FIGURE 3.
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Experiments of the first category consist of measurements of the
length of timé which elapsed from the moment the vibration exciter started
vibrating until a bubble cluster started forming, or until the cluster
developed to its final size, the limit cluster. During these experiments,
the frequency and amplitude settings of the vibration table were not
changed.

In the experiments of a second category, pressure fluctuations
were measured in the liquid and inside bubble clusters.

For investigations of a third category, a high speed motion pic-
ture camera was used to obtain information on the shape and size of
pulsating clusters, on the pulsation amplitude and on the turbulence
pattern inside clusters.

In the last category, all preliminary experiments can be collected
which served the purpose of providing information on the dynamic deforma-
tion of the tank; interactions between the tank, vibrating mechanism and
the fluid; and the behavior of compressible and incompressible objects
placed inside the liquid.

Most of these experimental techniques served more than one purpose.
When the technique of time measurements (category 1) was used to measure
effects of frequency and oscillation amplitude on the length of formation
and development time of clusters, the procedure was as. ‘follows: First,
the frequency control of the vibration exciter was set to the desired
frequency. Then the amplitude control was turned with one quick motion
so that the oscillation amplitude rose almost instantly from zero to the

desired magnitude. It was attempted to do this in such a way that little
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or no correction was necessary to obtain the exact amplitude after the
first move was made. This insured a well-defined beginning of the experi-
ment. From here on, the vibration system controls were not changed.

Meanwhile, the recording instrument recorded the amplitude of
the table acceleration on a moving paper strip. In a typical experiment
after the oscillations started, the recorded curve was at first a
straight line with only small irregularities. At the moment, however,
when the cluster appeared in the liquid, the curve rapidly or even sud-
denly changed towards larger amplitudes, This happens because the
bubble cluster alters the motion of the liquid and with it the load of
the inertia forces on the table. That, in turn, alters the amplitude of
the table's oscillation, .

After the rapid change of slope, the curve describes an arch
while the cluster develops. When the cluster reaches its final state,
the oscillation amplitude reaches a maximum and settles at a somewhat
smaller magnitude. The lengths of time which elapsed during these
phenomena were measured off the recordings.

The above description of events fits essentially all of the mea-
surements of this type but there were many variations in the details,
e.g. at higher frequencies the amplitude rise becomes greatly reduced
or the change can even occur towards smaller amplitudes.

Essentially, the same method was used to measure the changes in
cluster formation and development times when the concentration of dis-

solved gases in the liquid was changed. In this series of experiments,
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the tank was covered with a thin plastic membrane and filled with liquid
until all the air was forced out from under the membrane., This prevented
entrainment of bubbles at the surface during oscillation, and the bubbles
had to form out of the dissolved gases (air) in the liquid and probably
out of wapor.

The experiment consisted of the following sequence of steps.
After the table was turned on and a cluster had formed, the oscillation
amplitude was turned down again to permit the cluster to rise to the
plastic cover. The cluster was removed and replaced by liquid. Then
the amplitude was turned up again until the next cluster formed and the
procedure was repeated. With the removal of each bubble, the concentra-
tion of the dissolved gases in the liquid was reduced.

One modification of this experiment was achieved by replacing
the plastic membrane with an inch thick rigid Plexiglas plate.

Other experimental methods will be described later together with

discussions of results.

3.3 Experimental Results

One characteristic feature of the present problem is that the
phenomena depend on a very large number of factors and the mechanisms
seem to be strongly non-linear. As a consequence, it is possible that
the liquid column behaves in one way in a certain range>of the various-
variables, and very differently in another range. This is probably ;he
reason why the descriptions of phenomena by different authors frequently

differ considerably from each other.
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The many variable factors offer a large variety of possible
expefiments énd raise many questions concerning their effects. In the
present experimental investigation, it was attempted to collect informa-
tion on the effects of some of these factors. In the following discus-
éion, the experiments are arranged approximately according to the order
of the techniques used as outlined in the preceding paragraphs as long

as logical connections are not interrupted,

3.3.1 Bubble Cluster Formation Time

For practical reasons, one of the first questions one may ask
concerning thevpresent problem involves the length of time that passes
after vibration of the tank has started until a bubble cluster begins
to form. ihis formation time was measured over as wide a range of fre-
quencies and oscillation amplitudes as was possible, with the method
of measuring time as described in the previous section. Results
obtained with methyl alcohol are coilected in Figures 5, 6 and 7 for
water in Figures 8 and 9.

In these diagrams, the abscissa indicates the amplitude of the
acceleration oscillations which the table executed before clusters
appeared. The ordinate is the length of time between the beginning of
oscillations and the appearance of a cluster. The curved lines have
been fitted to join points belonging to the same frequency for easier
viewing. A characteristic that these curves reveal is that they all
aﬁproach monotonicly a minimum initial acceleration amplitude which

depends on the frequency. 1If the amplitude of the table acceleration
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was set below that minimum, no clusters formed even though small station-
ary bubbles may have been present.

It is noteworthy that in Figures 5, 6 and 7, for methyl alcohol,
the curves for lower frequencies shift to smaller accelerations as the
frequency increases, but for frequencies above about 200 cycles per
second and 275 cps respectively, this trend reverses. There is some
unexplained scatter between the day to day results, especially at higher
frequencies. These results are in agreement with those of Ponder, Blount
and Fritz (1964). The effect is almost certainly due to reciprocal inter-
action between the fluid and the container, possibly affected by the
frequency characteristics of bubble nucleation., As Figures 8 and 9
demonstrate, these trends are qualitatively the same for water also.

Another observed effect is also attributed in part to interaction
between tank and fluid. This effect is the decrease, as the frequency
increases, of the relative difference between the final table oscilla~
tion amplitude 8¢ after a cluster has developed and the initial amplitude
8y At lower frequencies (for methyl alcohol below about 125 cycles per
second) the amplitude jump as the cluster forms is violent and it is
accompanied by a disintegration of the fluid into a foamy mixture after
which the amplitude returns to its original value. These events occur
so fast that only the order of magnitude of the amplitude jump could be
observed. As the frequency increases, the magnitqde of this amplitude
jump rapidly decreases, then it may peak again, but ultimately the change

becomes zero and even negative, i.e. the table amplitude is smaller after
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the cluster has formed than before, Also, simultaneously with this
development, the cluster formation becomes increasingly gradual.

This behavior exhibits resonance characteristics and it raises
the question of how the various components, namely bubble, liquid, con-
tainer and vibration table participate in the process.

To a limited extent, this problem was explored by various means.

First, it was noted that (at least in the frequency range explored;
i.e. above 125 cps) the explosive character}with which clusters grow in
the lower frequency range is not an inherent property of the liquid motion
but a feedback phenomenon through the vibration exciter. This conclusion
was reached because the clusters developed gradually when the amplitude
was kept constant by manually operating the amplitude control.

If, as it appears, the dynamic deformation of the tank has such
a large effect on the behavior of the liquid, it is necessary to know
the responses of the tank in order to understand how the interaction
takes place. Since the present investigations were not designed to cover
problems related to the structural properties of the container, only a
few, mostly qualitative, experiments could be performed.

In theoretical calculations of the literature it is usually
assumed that the tank deforms according to the first mode, i.e. axisym-
metrically, with a radial breathing motion. The following simple experi-
ment attempted to verify the validity of this assumption.

Since pressure measurements in the liquid (to be discussed at
another place) indicated that the largest pressure fluctuations occur

at about the level of the cluster, the tank deformation was checked there.
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First a steel band was placed around the tank and it was tightened
right at the level of the cluster after a cluster had fully developed.
This restricted the symmetric pulsations of the tank and it was expected
that the cluster should show some sign of this, but it did not.

Because of the flexibility of the steel band, this experiment did
not affect any deformation of the tank which causes no change in the
circumference, Therefore, a heavy clamp was used to press on the tank
at two points only, over the cluster and at a diagonally opposite point.
To this, the cluster responded by turning around along the tank wall to
a location between clamped points. The deflection could be as much as
about 140°.

The deformation forces required to produce deflection of a bubble
cluster are relatively small, With a Plexiglas tank of 1/4" wall thick-
ness, it can be done even with the fingers, provided frequency and
amplitude are within a favorable range.

These observations are in agreement with instantaneous pressure
measurements along a tank diagonal intercepting the cluster (see Section
3.3.3 and Figure 13). These, too, indicate that the motion is not
axially symmetric, Further findings relating to pressure measurements
and tank properties will be presented in a later section of this report.

The above observations lead to the question of how the magnitude
of the forced oscillations, the tank deformation, the cluster pulsations
and the liquid motion relate to each other,

The relationship between volumetric displacements of the tank

bottom and the volume changes of the cluster during pulsations was
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established approximately with a high speed movie camera. From the
measured amplitude of the table oscillations and the diameters of the
cluster, measured on successive frames of the photograph, it was calcu-
lated that the cluster pulsated with volume changes about ten times as
large as the volume displacement of the tank bottom.

The explanation for such 1arge pulsations could possibly be
resonance of the cluster and liquid column system or large deformations
of the tank wall,

Some information to depide which process took place was obtained
on the following principle. When two rigid spheres are placed in an
incompressible fluid in which the pressure pulsates but there is no
relative motion between liquid and spheres, there is no force acting
between the spheres. However, if the liquid moves relative to the
spheres and the velocity component perpendicular to the line connecting
the centers of the spheres is finite, the spheres attract each other
(Bernoulli force). This relationship was exploited in the experiment.
It was reasoned that if the bubble cluster pulsates just to absorb the
in and out bulging motion of the tank wall, then there should be no
noticeable velocity increase in the liquid far above the cluster and
near the liquid surface when the cluster forms. Consequently, if two
rigid spheres of different density than the liquid are placed near
each other at this location, they should be unaffected. On the other
hand, however, if the cluster and the liquid column above it are in

resonance and that is the cause for the large pulsation amplitude, the
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liquid will oscillate with large velocity amplitudes even at the surface-
and the spheres should be attracted to each other.

Following this reasoning, two hard plastic spheres of 1/2 inch
diameter were suspended along the centerline of the tank beneath the
liquid surface with about 1-mm space between them. It was believed that
the spheres were heavy enough so that velocities of the order of the
tank motion did not mowve them noticeably, but velocities of ten times
that magnitude would. (Conditions were about 170 cps and 4 g accelera-
tion.) Indeed, the spheres hung motionlessly while there was no cluster
in the liquid, but the instant the cluster formed, they swung toward
each other. It is believed that this supports the assumption that the
cluster and the liquid above it are in a state of resonance; Further
confirmation of this conclusion is derived from the fact that the size
of the cluster was neafly that predicted by Minnaert (1933) and Smith
(1935) for resonance at the prevailing frequency. Also, measurements
of phase shifts between tank acceleration and the pressure indicated
the same condition. These results will be presented later.

Finally, one may mention in this connection the following
experiment. At a time when a fully developed stationary cluster occu-
pied a stable location, a tube was lowered into the liquid and a puff
of air was blown into it. Instantly, the cluster detached from its
site and vented to the surface.

If the end of the tube was below the cluster, the air blown into
the liquid moved to the previous site of the cluster and it remained

there. This process could be repeated periodically.
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Similar was the reaction of the cluster when a small balloon,
approximately the size of the cluster, was forced into the liquid. It
was, however, nmoted that the cluster dissolved only at selected eombina—
tions of frequency, amplitude and balloon size.

Since this experiment may have important implications for the
avoidance of cluster formation in fuel lines and tanks of rockets, it
may be recommended that this matter be further explored. For such a
program, one can suggest experiments with containers, the inside surface
of which has been lined with a compressible elastic material containing
trapped bubbles, like wet suits of divers. Other experiments could be
performed with oscillated tubes containing regularly spaced small bal-

loons or compressible spheres.

3.3.2 Effect of Dissolved Gas on Cluster Formation Time

Another parameter which seems to influence significantly both
the inception of bubbles and the length of time required to fully
develop a cluster is the concentration of dissolved gases in the liquid.

A series of runs was made to discover the role of this parameter.
The method used for this purpose was that described in Section 3.2,
Experimental Techniques. Results of the experiment are shown in Figure
11 where they have been arranged along the abscissa in the chronological
order of the individual experimental runs. In this arrangement the .
abscissa, when measured from left to right, becomes an arbitrary scale
of decreasing concentration of gases, probably air. The explanation

is given below.
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In Figure 11, the variable t1 is the length of time measured from
the onset of vibration until appearance of a cluster, t1 is called the
formation time. The value of t, gives the time from the onset of vibra~
tion until the cluster reached its final state, that of the limit cluster.
The diffgrence t, - tl is the development time,

In these experiments, the tank was covered with a plastic membrane
and the contents of the bubbles were forced out of the tank each time
after a cluster has formed. In this way the separated gases and vapors.
were removed and the gas concentration reduced with each successive run.
The curves of the figure show how rapidly the time required to form a
cluster increases as the amount of dissolved gases diminishes.

The curves for ty and t2 become irregular at lower gas concentra-=
tions (after Experiment No. 12), possibly because of the probabilistic.
nature of nucleation of gas bubbles. Therefore, thekdifference t2 - t1
is a better measure of concentration effects.

The series was discontinued with Experiment No. 17 because the
cluster which formed at one point could never fully develop. Apparently
the concentration became too low to make possible the growth of the
cluster beyond a certain size at the applied frequency and amplitude
(150cps,3g, methyl alcohol, 1/4 inch tank wall). After Experiment 17
the covef membrane was removed to permit entrainment of air into the
liquid. This mixing restored the initial concentration and when the

next run was made, the results matched the results of Experiment No. 1

within measuring accuracy.
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3.3.3 Effect of Liquid Density on Cluster Formation Time

An unéuccessful attempt was also made to correlate liquid density
and the minimum initial acceleration amplitude needed to form clusters.,
Results are shown in Figure 12. All experiments of Figure 12 were per-
formed at a frequency of 210 cps and with the tank uncovered. Four
liquids were used and they were selected to cover a wide range of demnsity.
In the diagram, the ordinate of the points gives the smallest initial
acceleration amplitﬁde at which clusters developed. These results scatter
too much, suggesting that density was not the only effective factor that
changed from one liquid to another. Explanation of the apparent chaos

requires further investigation.

3.3.4 Pressure Distribution in Vibrating Liquid Column

The second major set of experiments had the purpose of mapping the
pressure distribution inside the liquid. The tests were performed in
tanks of 1/4-inch and 1/2-inch wall thicknesses with the Kistler Amplifier
and a quartz pressure transducer. The liquid was methyl alcohol.

For the systematic exploration of the pressure field, traverses
were made with the pressure probe either along a diagonal or along the
centerline of the tank. The measured quantity was the instantaneous
pressure and it was displayed on the screen of a calibrated oscilloscope.
The peak-to-peak differences of the signals could be obtained with the
aid of the graticule ruling of the oscilloscope screen.

The evaluated data are presented in Figures 13 and 14 where the

ordinate gives the peak-to-peak value of the pressure fluctuations.
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In Figure 13 the traverse starts at the inside (about the center) of the
cluster Whicﬁ was at 11 inches from the tank bottom, and continues diago-
nally to the opposite wall. The frequency was 179 cycles/sec., It is
clear from this figure that the maximum of the pressure fluctuations
occurs at the cluster and that the distribution of the fluctuations is
not symmetric with respect to the tank centerline,

During these measurements, phase shifts with respect to the tank
acceleration were also measured but those results will be discussed
further below. Here it be just mentioned that the maximum lag of the
preséure behind the acceleration, about 90°, occurred also at the
cluster. This further demonstrates the resonance character of the
process. All these results agree with the observations of Kana and
Dodge in whose experiments the cluster developed at the bottom of the
tank.

Figure 14 shows how the pressure fluctuations varied along the
centerline, but this presentation is not well suited for interpretation
and, therefore, the data were further processed.

For Figures 15, 16 and 17, first pressure oscillations were
calculated which Would>occur in the liquid if it oscillated as a rigid
body. These results were subtracted from the actually measured values
and the differences were plotted. Thus, the pressure distributions in
these diagrams represent the effect of the relative motion of the liquid
with respect to the vibration table, the dynamic pressure fluctuations.
These distributions give also an indication of the dynamic tank deforma-

tions.



61

1ajsn|y a91qgng b buisiaapa) jpuobbig Hubl
p Buo|y suoiipnion|4 ainssald YDad4-0}-¥Ddd 40 uolnquisigq ¢l ainbi4
jpuobpiq Huojy suijsejua)y woi4 8duDisig

woo¢ 2 _ 0 - 2- ¢- - oo
g N
2 ? 3
Z N 02
..Ilm —+ 02 iyblay pinbi m
4 | a1,271-9"lom,, /1 \
g ‘yupy sojbixeld R o
g 10403y [AusoW N
2 - 1om
oM ] o~ R
YUD| ~ N
~ Ny .
g N 09
y N
7 o R
' 128_0 a|qqng apisu| o o o o N |
N L A
7 ° ° N 08
7 N
7 N
’ ° N
m ng.o ~ 1sd
_ . 00!

Suo14DNION|4 8INSSdId



-

Height Above Bubble Cluster
o

62

Methyl Alcohol
Plexiglas Tank, 1/4"Wall,
— Liquid Height 20"

6-172" 1D

Pressure Fluctuation

Figure 4. Distribution of Peak-to-Peak
Pressure Fluctuations Along

Tank Axis
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o Measured

——— Equation [12] of Kana and Dodge
Fitted to Measured Pointo ‘
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Plexiglas Tank, 174" Wall,
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Acceleration Amplitude 3.2g

Frequency 150cps

Cluster at Bottom of Tank
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Height Above Bubble Cluster

Figure 17. Distribution of Peak—to-Peak
Pressure Fluctuations Along Tank
Centerline Caused by Relative Motion
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The abscissa in Figures 15, 16 and 17 gives the position of the
probe measured from the level of the cluster. For reference, the rela-
tive positions of the tank bottom and the liquid surface were also marked
in Figure 15. The lines for the surface give the latter's positions
measured from the cluster at the time when the probe was at the highest
measured location, and the lines for the bottom giﬁe its positions rela~
tive to the cluster when the probe was moved toVits lowest measured loca=
tion, Although in all experiments the liquid column height was 20 inches,
the two lines representing the surface do not coincide with each other
because the cluster drifted somewhat’during the runs and from run to
run. The same applies for the lines indicating the tank bottom.

It was possible to compare some of the experimental results with
theoretical calculations. The theory on which these calculations were
based was developed by Kana and Dodge (1964) and the results are included
in Figﬁres 15, 16 and 17 in the form of solid lines. For the calculation
of these curves, thebfime independent part of Equation [12]* of Kana and
Dodge was used. Equation [12] is

sin £ z

ﬁ(z’t) = - pcwx —— (3G (J.)t
: [o] 1)
cos = L

in which P = dynamic pressure,

z distance below surface,

*Equation numbers shown in brackets refer to equations in the literature
reference cited. ) T I .
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t = time,

x = amplitude of tank displacement,
¢ = wave velocity,

% = length of liquid column.

The unknown constant c in this equation was determined by substi-
tuting a measured value for’the pressure p and the depth zlwhere the
pressure was measured, In each experiment the maximum dymamic pressure
and the corresponding depth were selected for substitution in order to
make the calculated curve through the highest experimental point plotted
iﬁ the diagrams° In this way good agreement between experiment and theory
eould be achieved as far as the pressure distribution was concerned.

The values of c were also celcuiated with physical dimensions
agd properties of the tank, liquid and air (Equation [7] of Kana and
Dodge)J Results’of the two methods are compared in Table I.

It was attempted’to calculate the pressure distribution also with
the values of c derived from Equation [7], i.e. using ¢ = 917 ft/sec
instead of ¢ = 652 ft/see for Tank 1. This, however, gave pressures
which were too large by an order of mageitude, The values for c were
also used to calculare the location of the cluster by means of Equation
[18] of Kana and Dodge and the results were compared with the measured
locations. As ad‘example, during the experiment with Tank 1 at 150 cps
referred to above . in .this - paragraph and also represented in Figure 15,
the cluster was 10 inches below the surface. Equation [18], however,
had'ne realistic solution with ¢ = 652 ft/sec and gave the result 17.5

inches below the surface with the calculated velocity c¢ = 917 ft/sec°



TABLE I

Comparison of Experimental and Calculated Values of
Wave Velocity in Vibrating Liquid Columns
Specifications: ‘Tank 1: Plexiglas;
Moduius of elasticity 4.5 x 10% psi
I.D. 6-1/2 inch
0.D. 7 inch
Tank 2: Same as Tank 1 except I.D. 6 inch
Liquid: Methyl Alcohol;
Density 1.57 slugs/ft3
Compressibility at 20°C 5.825 x 107 8ft2/1b.
Estimated volume ratio (cluster to total) for
Tank 1: 7.88 x 107*

Tank 2: 9,26 x 1074

¢ from Equ. [7] | ¢ from measured data and Equ. [12] | frequency
Tank 1 " 917 ft/sec. 652 ft/sec. cluster 10-12" above 150 cps
bottom.
Tank 2 1042 ft/sec. 1085 ft/sec. cluster 11" above 200 cps
bottom ‘
Tank 2 813 ft/sec. cluster at bottom 150 cps

68
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When Equation [18] was solved for ¢ using the measured cluster .
location of iO inches, the result was between the two earlier values,
namely, ¢ = 814 ft/sec. This c resulted with Equation [12] in a calcu-
lated pressure distribution which lay between the distributions corres—
ponding to ¢ = 652 ft/sec and ¢ = 917 ft/sec and was about three times
higher than the measured results.

In summary, Equation [12] of Kana and Dodge gave good approxima-—
tion for the pressure distribution if the constant ¢ was adjusted in
such a way that the equation was satisfied when the highest measured
value for the pressure and the corresponding depth below surface were
substituted. Then, however, the calculated location of the bubble from
Equation [18] became unrealistic (above surface level). If ¢ was
adjusted to give the right bubble location (with Equation [18]), then
the pressure distribution, according to Equation [12], was off by a
factor of 3.

Independent determination of ¢ from physical properties of tank
and liquid resulted with Equations [12] and [18] in pressures which were
much too large, by an order of magnitude, and a bubble location off by
‘a factor of 175 per cent.

These discrepancies are not too surprising, since in the deriva-
tion of these equations Kana and Dodge assumed that the gas is uniformly
distributed in the liquid and that is very different from the situation
of the present experiments in which almost all the bubbles were concen-

trated in one cluster,
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For a final comparison, the equilibrium bubble location was also
calculated with Bleich's Equation [25] (same as Kana and Dodge:

Equation [3]). It gave 41 inches below surface Which means 21 inches
below tank bottom.

In the curves outlined by the measured points, in Figures 15 and
16, a dip can be observed slightly below the cluster. The cause of
this characteristic is not clear, one could only determine that it
varies with tank wall thickness and that it can be correlated with some
other experimental observations.

Upon examination of the pressure distributions in Figure 15 and
16, one finds that the local maximum and minimum below the cluster are
more pronounced in the thin-walled tank than in the tank with the
thicker wall. In correlation with this, it was observed that the cluster
was much more stable at its location half way between top and bottom of
the tank in the thin-walled tank than in the tank with the thicker wall.
Iﬁ the latter tank, the cluster drifted a lot during the experiments and
it also easily dropped to the bottom of the tank.

A similar change in behavior was noticed in the same tank when
the frequency was changed. In Figure 16 one set of points was obtained
at 150 cycles/sec., the other at 200 cycles/sec. Although the row of
points for 200 cps does not exhibit a local minimum, it still has a
pronounced inversion or maximum near below the cluster. Correspondingly,
the cluster was very stable in its location at this frequency. At the
lower frequency, the trend of the points has a very weak maximum and

minimum below the cluster and the latter's stability was also weak.
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One may than conjecture that the bubble is stabilized by a maximum of
the pressurevdistribution°

These observations are consistent with the theory developed in
Section 2,2.1.

A natural question in this connection is whether the structure
of the tank uniquely determines the dynamic pressure distribution.
It seems that it does not. For evidence, one can take the points in
Figure 17 and compare them with the points for 150 cycles/sec. in
Figure 16, 1In these two experiments, all conditions were the same
except the location of the cluster which was at the bottom of the tank
in the experiment of Figure 17, while it was 12 to 16 inches above the
bottom during the experiment of Figure 16. In these two cases, the
pressure distributions are definitely different and the maxima of the
curves vary according to the location of the cluster.

It seems that the dynamic pressure distribution is generated by
a strong feedback effect of the cluster and the tank properties consti-
tute only certain dynamic constraints. If this is true, then small
bubble analyses, like those of Bleich, Kana and Dodge, Jameson and
Davidson, etc., which assume that the bubble does not change the
pressure field in the liquid, cannot be applied to fully-developed
bubble clusters.

Interpreted in the light of the above discussions and more
observations on bubbles and clusters, the birth of a cluster occurs as
follows. When the tank vibrates with such frequency and amplitude that

bubbles form and the smallest ones are stationary or move downward,
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but as soon as they grow a little they rise to the surface, bubbles are
distributed élong the wall in a statistically random manner but with
somewhat higher density around certain preferred sites. The locations
of these sites seem to be functions of the tank structure and the
table motion, including frequency and amplitude.

Each bubble has a small feedback effect on the wall but singly
they cause negligible changes. Occasionally, however, a number of
small bubbles " happen to be so close to each other that their ranges
of influence overlap. In such a case, their combined effects on the
pressure field directly and by feedback through the wall may add up
to an intensity which is sufficient to affect larger bubbles, which
normally would rise to the surface, in such a way that they stop or
even move towards the group of small bubbles and merge with it.

At this stage, the agglomeration of bubbles exhibits some
fatures of clusters. Each individual bubble vibrates vigorously and
they churn around each other. Together they could be called a
primitive or quasi cluster.

With the arrival of each additional bubble, the agitation
becomes more vigorous and with it also the effects on the pressure
field and the wall. Soon bubbles stream in continuously from larger
and larger distances and the quasi cluster rapidly develops into a
full cluster.

Thus, the birth of a cluster from existing bubbles is a chance
event triggered by the accumulation of a critical amount of bubbles.

As the cluster approaches its final stage, the pressure and

acceleration amplitudes grow towards their resonance values.
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Simultaneously their phases shift with respect to each other (see later
in this section). Such a phase shift, however, means, according to
Equation 2.2.1-37, that the force holding the cluster down decreases,
and thus the cluster slowly begins to rise. With decreasing depth, how-
ever, the resonant frequency increases, and the phase shift together with
the amplitude of the pressure fluctuations decrease. This has two conse-
quences. On the one hand, the cluster begins to lose bubbles and stops
growing. On the other hand, reduction of the phase angle increases the
downward force. If this opposing trend is strong, it either fixes the
cluster at a stable equilibrium location or causes it to move periodically
up and down. If it is not sufficiently strong to achieve this, the cluster
will slowly continue to grow and rise, and eventually will vent to the surface.

As it was pointed out, growth of a cluster is associated with an
increase of pressure fluctuations. One would then expect that such intensi~
fied oscillations increase the probability of bubble and cluster formation
eVerywhere in the tank. 1Indeed, this seems to be the case, especially in
water, where one can see iseveral growing satellite clusters,; most "
of which, however, fall into the parent cluster before they could reach
full development. 1In liquids where such additional small clusters do not
appear, the reason apﬁarently is that the small individual bubbles stream
to the cluster too fast to permit formation of a new primitive cluster.
Still it is very frequent that two or three clusters manage to develop.
If they are powerful enough to effectively distort the local wall
oscillations and pressure field and thus establish the conditions for
their own stabilization, they can remain and even successfully compete

with the original cluster by attracting and absorbing it.
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If the probability of bubble formation increases too much, the
liquid transforms into a foamy mixture and the process may collapse,

In regard to Figure 15 a further remark is in order. Here two
sequences of measured points have been plotted which deviate from each
other considerably although the experimental conditions were almost
identical, the only difference, as far as known, being that the rim of
the Plexiglas tank was stiffened by a flange in one of the runs and
detached from the flange in the other. This further demonstrates the
importance of the mechanical characteristics of the container.

The effect of detachment of the flange was so great on the fluid
behavior that the acceleration amplitude had to be reduced from 6.4g,
the value it had when the flange was attached, to 3g in order to be able
to retain the cluster at the same approximate level in the second experi-
ment as in the first one.

As indicated earlier, the phase shift of the pressure oscilla-
tions in relation to the oscillations of the tank accelerations was
also measured along with the magnitudes. This was possible because
the oscilloscope displayed both signals simultaneously. The phase shift
was obtained by measuring the distance between maxima or other corres-
ponding points. This is not a very accurate method and, therefore, only
a summary of the results and some conclusions will be listed at this
place. More accurate measurements with the proper instruments are

planned for future experiments.
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In a typical experiment at frequencies between 150 and 179 cps
a cluster stabilized at about 11 inches above the bottom of the tank,
and it had a core of about 1 inch in diameter. When the pressure probe
was inserted into the center of the cluster, the pressure wave shown
on the screen was strongly distorted from sinusoidal and so its phase
angle could not be determined accurately. The results obtained indi-
cated a lag behind the tank acceleration of either slightly more or
somewhat less than 90°. The pressure lagged behind the acceleration
at every point in the tank where it was measured and at the boundary
of the cluster the lag was 80.5°, By the time the transducer reached
the center of the tank along a diagonal, the phase shift was reduced
to between 54° and 58°, and at the opposite end of the diagonal the
phase shift was 51°.

Along the centerline of the tank, the main changes of the phase
angle were restricted to a few cluster radii above and below the level
of the cluster. Above that region, the relative phase angle was 37.8°
and below it the phase lag stayed constant at 10.8° to within 1/8 inch
from the tank bottom.

Two tentative conclusions can be made even on the basis of the
presently available results. One is based on the fact that most of the
liquid above the cluster is only moderately out of phase with the accel-
eration while the phase lag of the cluster itself is 90°. This circum-
stance suggests that the resonating system comprises not only the

pulsating cluster and a swinging mass of the liquid but also at least
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some portion of the tank wall. Otherwise continuity of the liquid would
be violated. The second conclusion is that these results support the
assumption of the model for the liquid motion which was adopted in
Section 2.2:1., There, when the effect of finite tank dimensions on the
net displacement of the bubble was calculated, it was assumed that the
liquid moves essentially as if it consisted of two parts, one on one
side of the bubble moving with one velocity and another one on the other
side moving with another velocity, the cluster being in the middle com-
pensating for the difference. Although the above results do not prove
that this is necessarily so, they are consistent with this hypothesis,
The experimentally established pattern, namely that the phase angle is
constant below the cluster and almost constant but different above it,
is what one would expect for such a model. Of course, velocity measure-
ments would be necessary to verify these conjectures.

3.3.5 Observations Relating to Origin of Bubbles in Vibrating Liquid

Columns

Little has been said until now about how bubbles get into the
liquid. 1In the discussion of this, one has to distinguish between two
basically different origins of bubbles. One mechanism by which bubbles
are introduced into the liquid is surface turbulence. If the amplitude
of the tank oscillations is sufficiently large, the liquid surface
becomes unstable and it breaks up in an irregular motion similar to tur-
bulence. 1In this state, local peaks of the surface may break or separate

into droplets by surface tension and be thrown into the air. When they
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fall back into the 1liquid, they carry minute amounts of air with them.
These small quantities of air form tiny, even non-visible, bubbles and,
if the oscillation amplitude is sufficiently large, they remain in the
liquid and move downward. Once such a small bubble is present in the
vibrating liquid, it apparently encourages gas separation, since it
grows visibly on its way down. Growth is also caused by the attraction
and coalescence of the synchronously pulsating small bubbles., This-
description of bubble entrainment suggests that it depends on all the
parameters which control the behavior of surfaces.

As expected, the surface of Meriam fluid No. 3, with viscosity
of about 2?.6 centipoise, remained smooth even at high acceleration
amplitudes and also no bubbles could be observed in the liquid. Finally,
bubbles were generated by another mechanism from the inside of the liquid
at 16.8 g's and 210 cycles/sec, but still no entrainment could be
observed at the surface.

The above described mechanism of entraimment accounts also for
the observation that bubbles begin to appear at smaller tank oscillations.
in a thin-walled tank than in a tank with a thicker wall. Because of
its lesser rigidity, the thinner wall vibrates with larger amplitudes
and shakes the surface more. This observation was made with two tanks
having 1/4 inch and 1/2 inch thick walls, respectively.

The other mechanism by which bubbles are produced in the oscil-
lating liquid is nucleation. This phenomenon seems to be very similar

to nucleation in boiling. It appears that their dependence on temperature
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and pressure is similar and also some of their other characteristics.
One such characteristic is that small local irregularities of solid
boundaries are preferred sites for bubble formation. One can see, at
times, a meandering row of fine bubbles, which seem to rise persistently
out of a fixed point on the bottom surface of the tank. If the liquid
is disturbed, the row of bubbles is carried away but the new bubbles
again appear above the original spot. This is similar to what happens
in boiling.

The first, hardly visible, bubbles appear about 4-5 mm above
the bottom and they grow slowly as they rise. Their spacing is very
regular and the manner in which they move and grow strongly suggests
that the row starts all the way from the bottom surface but the bubbles
are too small to be seen there. This phenomenon is probably related
to the following observation.

One of the Plexiglas tanks was constructed in such a way that
there was a circular groove (0.025 inch wide and about 1/4 inch deep)
in the bottom plate along the inside surface of the wall. This groove
ﬁas filled intermittently with a plastic solution so that small parts
of the gfoove remained. ADuring tank vibration these pockets very soon
contained a small pulsating bubble. These bubbles could be seen there
most of the time of vibration and when a cluster moved near one of
these pockets, bubbles started streaming out of it in great numbers.
It is known that bubbles are generated by cracks in boiling.

Bubbles may appear also anywhere else along the wall and they

may or may not adhere to it. As was noted in an earlier paragraph,
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the inception of bubbles is affected also by the gas concentration in
the 1iquid.‘ As the concentration decreases, the inception of bubbles
is more and more delayed. This dependence suggests, among others, that
the incipient bubbles consist mainly of the dissolved gases rather than
of vapor.

As it could be predicted, bubbles formed more readily when the
liquid was at a higher temperature than when it was coocled.

With the equipment presently available, the pressure above the
liquid could not be varied, still a way was found to probe dependence
of bubble formation inside the liquid on pressure. For this purpose,
two experiments were performed. In one the entirely liquid-filled tank
was covered with a thin plastic membrane. In the second, it was closed
up with a one-inch thick rigid plate, taking care that no air bubbles
were left inside.

In the first case, the top of the liquid was always at atmos-
pheric pressure, but the pressure dropped below this at the bottom of
~ the tank every time the tank accelerated downward. In this particular
experiment, bubbles formed at 3g acceleration amplitude.

When the top of the liquid was in contact with the rigid 1id
firmly attached to the tank wall, the pressure distribution became fun-
damentally different. During the downward acceleration, the top of the
liquid was no more at atmospheric pressure, but almost at the pressure
which prevailed at the bottom during the upward acceleration. This was

caused by the rigid cover which now pushed the liquid downward. Thus
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the pressure never dropped below atmospheric, which existed when the
tank was at rest,

With this configuration, the acceleration amplitude had to be
increased to approximately 25g before bubbles appeared. At this point,
probably compressibility of the liquid and elasticity of the tank had
already a sizeable effect on the pressure variations. One is led to con-
clude that increased pressure impedes or even inhibits nucleation.

The experiment with the rigid tank top provided also supporting
evidence for the validity of the theoretical model applied in Section
2.2.1. There it was pointed out that the net motion of bubbles toward
the bottém is to be attributed to the difference in the boundary condi-
tion at the top of the liquid and at the bottom. ﬁow, with the thick
1lid fastened, the boundary conditions.became identical at the two ends
of the tank and from a dynamical point of view only. the action of gravity
remained asymmetrical with respect to the oscillatory motion.

Under such conditions, all effects but that of gravity are can~
celed and bubbles are expected to behave like in containers at regt.

The supposition was verifigd by the fact that bubbles and clusters went
immediately to the top whenever they formed even at 25g- acceleration.
:3.3.6 Effect df”VibratiOn Ex¢iter 'System Characteristics on Bubble

- Behavior

Several times in this section, it was mentioned that the vibration
exciter system had an important role in influencing the<§ehavior of the

liquid and the bubbles. For instance, it was noted that the sudden
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explosive development of clusters under certain circumstances was due
to the response of the exciter table. From the point of view of the
exciter system, the tank With its liduid‘content is an impedance which
changes its characteristics as the bubble develops. Since the mass of
the exciter table (89 1b) was comparable to that of the full tank (35
1b), frequency characteristics of the tank and liquid had a strong
effect on the frequency characteristics of the combined exciter-tank
system and thus changes inside the tank, like formation of a cluster,
strongly altered the motion of the whole system.

In order to get acquainted with some of the dynamic properties
of the whole vibration system, a few experiments were performed. The
results are shown in Figure 19. The experiment consisted of varying the
frequency and observing the changes in amplitude. In these experiments
the table had wvarious tyées of loads but each had the same weight, 35
lb. The amplitudes of the table oscillations were set very small, about
'0.6g or less, much smaller than necessary.for bubble formation or even
to cause visible agitation of the liquid surface in order to eliminate
those phenomena from interfering with the table motion.

One of the loads was a steel block., Because of its rigidity,
it did not change the frequency characteristics of the table to any
notable extent, as can be seen from Figure 19. The other extreme type
of load was mercury filled into pliable plastic bottles. These bottles
readily deformed and absorbed the vibrations of the table by extending

in the region near their bottoms hardly forcing the bulk of the mercury
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to move. Consequently, the dynamic effect on the table was almost ;s-
if there‘had been no load at all. For comparison, the table was also
tested without load. The results of both of'these experiments are also
plotted in Figure 19.

Finally, the frequency response was examined with the liquid-
filled tank. The plotted points show how strqngly and abruptly the
oscillation amplitude changed with changing fi'equency° Several similar
but émaller jumps occurred also at higher frequencies (beyond the range
of the diagram),

The exact relationships determining this behavior are unknown
and, therefore, the effects could not be accounted for properly in the
experimentai results., It was, however, noticed that the critical fre-
quency at which the big jump occurred changed from day to day and some-
times even during an experimental run and with it changed noticeably
some results. For dillustration of such effects, in Figures 6 to 8 some
of the repeated results were also plotte&,, For instance, in Figure 6,
there are two curves’for 176 cycles/sec. These results were obtained
on two successive days without any change of the apparatus. The diver-
gence of these two cu:veé and also some inconsistencies in the succession
of the other curves in these diagrams are suspected to be comnnected to
changes of the frequency characteristics of the system. It is, however,
not clear whether the changes occur in the vibration exciter or in the
tank and whether the differences in the results are caused by the changed

frequency characteristics or both are caused by variations of some other
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factors. It is also not known‘what parameters are effective. Based
on records, it seems. that the temperature has a certain‘influence,
Finally, it may be mentioned that the response of the vibration
table was so sensitive even at an acceleration amplitude as small as
0.3g that siight amplitude differences could be measured when the 2-
inch thick base of the tank was fastened to the table with 2, 4 or 8

bolts, respectively.



4,0 CONCLUSIONS AND RECOMMENDATIONS

Theoretical investigations of the behavior of oscillated viscous
and non-viscous liquid columns led to the following conclusions:

1. The present equations for non-viscous liquids explain quali-
tatively observed behavior of bubbles and clusters even for clusters
the sizes of which are comparable to the container cross section.

The motion of bubbles and clusters depends on the amplitudes and rela-
tive phase angles of the fluctuations of tank and bubble velocities
and the pressure.

2, 1In order to be able to predict liquid behavior correctly
when large clusters are present, the theory had to be developed with
fewer restrictions than it was done in previous literature.

3. Because of the required generality of the theory, the
response of the solid structure has to be solved simultaneouély with
the liquid motion. Present knowledge of the role of container deforma-
tions is not sufficient to furnish the necessary information.

4. The viscous theory predicts the deviations of thé bubble
stabilization criterion from inviscid flow theories and agrees in
general with experimental results. The theory also establishes the
need to consider the effects of surface tension.

5. TFurther exﬁension of the theory is required to predict cer-
tain observed characteristics of the cluster development and motion,
and of the pressure distfibution in the liquid not covered by existing

theories.

86
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Experimental results permit the following conclusions:

1. The liquid motion defends on a large number of parameters,
and within the range of variations of these parameters several domains
with largely different liquid behavior can be separated.

2, Generation of bubbles and the development of clusters
strongly depend on oscillations frequency and amplitude, structure of
wall surfaces, density and viscbsity of the liquid, and concentration
of dissolved gases;

At a constant frequency the time required to develop a cluster
increases as the oscillation amplitude decreases. The curve approaches
asymptotically a minimum required amplitude for formation of a cluster.
This minimum amplitude varies with frequency and it decreases at first
as the frequency increases, but it increases again beyond a critical
frequency.

Reduction of gas concentration in the liguid increases the time
required to form bubbles inside the liquid, indicating that the deci-
sive component in the bubble content is gas separated from solutien.

3. The deformations of the container have a crucial effect on
the development and stabilization of clusters, and the clusters in
their turn affect the dynamic deformations of the tank. Because of
this feedback effect, the usual "small bubble" assumptions are not
adequate as demonstrated by measurements of dynamic pressure distribu-

tions.
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As a consequence, also, the usual assumption that the bubble
pulsates invphase with the tank oscillations does not agree with the
measurements of phase angle between pressure and tank acceleration when
a cluster is present.

4. Clusters and the surrounding liquid are in a state of reso-
nance and the cluster size is approximately that of the resonant bubble
size predicted by theory.

5. Theories assuming uniform distribution of bubbles in the
liquid predict pressure distribution and stable bubble location only
with limited agreement with experimental results when applied to
clusters,

6. Motion of the vibration exciter table is affected by the
development of clusters in the tank with the result that the liquid
motion is considerably altered to a yet not fully known degree.

Based on the above conclusions, the following recommendations
can be made.

For calculations of the liquid and cluster motions, further
development of the theory is required.

1. 1In particular, theories are needed for the detailed calcu-
lation of liquid velocity, pressure and tank deformation fluctuations
in order to solve the equations for the motion of bubbles and clusters
and to determine their stability.

2. The development of a theory of viscous fluids has to be

further pursued,
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3. There is no theory available for the inception and growth
of bubbles in oscillating liquids.

For the experimental investigations of oscillating liquid columns,
the following may be recommended:

1. Experiments of the present investigations should be continued
over extended ranges of parameters in order to complete the understanding
of the mechanisms involved. But in thé arrangement of these experiments,
it should be attempted to separate the effects of certain factors in
order to render the effects of other factors clearer. Ways to achieve
this could be the following:

1.1. By performing some experiments with a heavier vibration
exciter or with one electronically controlled and possibly by using
smaller tanks, distortions of the table motion due to forming clusters
and feedback effects of such distortions on the fluid behavior could
be eliminated.

1.2. Construction of very rigid tanks would permit investi-
gation of the mechanisms of the fluid alome,

2. ©Since all experiments were conducted at the same liquid height,
experimental information on the stabilization of clusters 'and response
of tank deformation in function of liquid depth is very limited and
requires fuller exploration by varying the tank length.

3. It was noted that the structural properties of the container
have crucial effects on the liquid motion.  For this reason,; a major
effort is needed to investigate the dynamic responses of oscillating

containers filled with a liquid-gas mixture.
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4, It will probably require a major experimental effort to
establish the mechanism of bubble nucleation in oscillating liquids,
The only available information associated with this problem refers to
nucleation in boiling and even this information is not complete.

5. Development of new techniques and equipment.

5.1, TFor the detailed and sufficiently accurate mapping of
the instantaneous pressure field inside the entire tank analysis of
the spectrum of the pressure with a wave analyzer is required in the
absence of bubbles and clusters and under conditions when bubbles and
clusters are present.

5.2. Equally needed is the analysis of the liquid velocity
both near and far from bubbles and clusters. For these measurements new
methods have to be developed and results would yield information on
resonant and turbulent conditionms.

5.3. It is also recommended to explore the flow field with
the technique of birefringent liquids in na;rowktanks with essentially
two-dimensional liquid motion.

6. Based on previous experimental evidence and theoretical:
results, viscosity and surface tension play an important role in the
behavior of liquids and bubbles. It is suggested that special atten-
tion be paid to the effects of these properties on the entrainment,
motion and stabilization of bubbles.

7. Experiments with controlled bubble sizes would be required

to understand the motion and effects of individual bubbles and to
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verify theoretical results. Forvsimilar:purposes'experiments ﬁith small"
balloons, siﬁgly or in ;arger numbersland various distributiohs, should
be performed. | |

8. Finally, the suppression of clusters might be investigated
by inserting compressible elements, e.g. lining, into the oscillating

tank.,
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